Specific Heat

Review: page 53

How do I quantify how much energy something loses? Calorimetry (physically collect)

Q: Why would someone last longer when they are trapped outside vs. in water.

Q: How does one mathematically compare energy exchange vs. Temperature change?

Q: How do the specific heats of various substances differ?

What is heat and temperature?

Heat is the flow of energy from area of high temperature to area of low temperature.

Temperature--velocity of the particles • is a measure of heat in⁰F, ⁰C or K

- is the average kinetic energy of particles

Low Temperature

High Temperature

specific heat capacity(C)-the amount of heat required to cause a unit of mass to change its temperature by 1°C.

Substance	C in J/gm*°C
Aluminum	0.900
Copper	0.386
Gold	0.126
Silver	0.233
Tungsten	0.134
Zinc	0.387
Mercury	0.140
Alcohol(ethyl)	2.4
Water	4.18
Ice	2.09
steam	2.09
Glass	.84

Heating up solid, liquid or gas

$$Q = m \cdot C \cdot \Delta T$$

(this is not for phase changes)

Quantity of Heat (Q) = mass (m) x specific heat capacity (C) x temp change (ΔT)

What quantity of heat is necessary to raise the temperature of 100g of water from 10°C to 90°C?

$$\Delta T = 10^{\circ} C \text{ to } 90^{\circ} C = 80^{\circ} C$$

$$q=100g * 4.18 J/g*^{\circ}C * 80^{\circ}C = 33440J$$

How much thermal energy is needed to heat up 5 grams of silver from 25°C to 35°C?

$$q = 5g * 0.233 J/g^{\circ}C* 10^{\circ}C = 11.65J$$

Substance	C in J/gm*°C
Aluminum	0.900
Copper	0.386
Gold	0.126
Silver	0.233
Tungsten	0.134
Zinc	0.387
Mercury	0.140
Alcohol(ethyl)	2.4
Water	4.18
Ice	2.09
steam	2.09
Glass	.84

$$Q = m \cdot C \cdot \Delta T$$

2.)	963J=100g·0.97	J'C' AT
	ΔT= 10.7°C	25°C 10.7 35.7°

Substance	C in J/gm*°C	
Aluminum	0.900	
Copper	0.386	
Gold	0.126	
Silver	0.233	
Tungsten	0.134	
Zinc	0.387	
Mercury	0.140	
Alcohol(ethyl)	2.4	١
Water	4.18	
Ice	2.09	
steam	2.09	
Glass	.84	

M. 150g 50g 7, 21°(}2°c /00°c }77°c
7, 23°c}2°c /23°c}

Q 12545 45amc > 1254

Q=150g. 4.1876:C.2°C= (50)(77) (30) (77 (=0.325 (u or 7n

$$Q = m \cdot C \cdot \Delta T$$
.

1. What quantity of heat is required to raise the temperature of 450 grams of water from 15°C to 85°C?

The specific heat capacity of water is $4.18 \text{ J/g}^{\circ}\text{C}$.

Given:

$$m =$$

$$Q = m \cdot C \cdot \Delta T = (450 \text{ g}) \cdot (4.18 \text{ J/g/}^{\circ}\text{C}) \cdot (70.^{\circ}\text{C})$$

$$C =$$

$$Q = 131,670 J$$

$$T_{initial} =$$

$$T_{\text{final}} =$$

$$Q=5g * 0.84 * 10 = 42 J$$

$$167.5 J = 25g * C * 50°C$$

$$\frac{167.5 \text{ J} = 25\text{g} * \text{C} * 50^{\circ}\text{C}}{(25\text{g})(50^{\circ}\text{C})}$$

